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Basin of attraction of the optimal perceptron with 
biased patterns 
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lnstitut f i r  Theoretische Physik der Humboldt-UniversitPt, lnvalidenstrarse 42, 0-1040 
Berlin, Germany 

Received 24 January 1991, in final farm 26 March 1991 

Abstract. For an extremely diluted neural network model designed by the optimal Gardner 
rule that stores patterns with IOW level of activity the basin of attraction is studied 
analytically. The recursion relation for the overlap with a stored pattern is two-dimensional 
and yields a richer bifurcation scenario than in the case of patterns with symmetric statistics. 
The biaE in the patterns gives rise to ferromagnetic attractors which compete with the 
patterns. 

There are several interesting parmeters characterizing the performance of attractor 
neural networks studied by statistical physicists as models for associative memories 
(for an introduction see Amit (1989) and Geszti (1990)). These include the storage 
capacity (1. usually defined as ratio of the number of stored patterns p and the number 

of the system, the robustness, the retrieval time, the learning time and the ability to 
generalize. Many studies have been devoted to the determination of the storage capacity 
a, for a variety of pattern statistics and learning rules, in part because this quantity is 
accessible to analytical calculations within the replica approach (Amit er a/ 1985, 
Gardner 1988). On the other hand it is clear that the typical size of the hasin of 
attraction of a pattern is at least as important to characterize an associative memory 
as the storage capacity. Since the critical storage capacity is reached when the basins 
of attraction shrink to zero there is a certain complementarity between storage capacity 
and attraction basin as also found in numerical simulations (Forrest 1988) and analytical 
studies of special cases (Gardner 1989, Opper et a /  1989). 

In the present paper we determine the hasin of attraction realized by the learning 
rule giving . .  maximal storage capacity for patterns { g f ]  with low level of activity. The 
pattern statistics is given by the distribution 

Qf EefirQCs -N, the typica! basin Qf .ttr.c!iQa describing !hp errQr-cQrre&ng &i!i!ies 

l + a  1-a  
P(g7)  = q g f  - 1 )  +- s(g f  + 1) .  

2 

To be able to study the problem analytically we consider an extremely diluted model 
where the average connectivity C of the neurons scales as log N. As is well known 
(Derrida et a/ 1987) the dynamics of the system can then be described by a set of 
recursion relations for macroscopic order parameters. The problem has been solved 
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already by Gardner for the special case ((5:)) = a = 0 (Gardner 1989). I n  this case the 
maximal storage capacity is a, = 2; however, only for (Y S aB = 0.42 the attraction basins 
are large. For a # 0 the correlations between the patterns allow much larger values of 
a, (Gardner 1988) and it is hence interesting to see how the attraction basins are 
modified. In the following we will choose a < O  so the '+' sites are the 'signal' and the 
'-' sites act as 'background. 

As in the case a = 0 the recursion relation for the retrieval overlap is determined 
by the probability distribution of the stabilities 

A Engel and Th Schnelle 

A, = [:c-'/' 1 J,,.$. (2) 

However, now this probability distribution is different at signal and background sites, 
i.e. it depends on 51. 

Mathemaricaiiy this gives rise to a two-dimensionai recursion reiation of the form 

m + ( f +  1 )  =f+(m+(t) ,  m-(/)) m-(r+l)=f-(m+(r) ,  m-(t)) (3) 

for the order parameters 

where Z* means the sum over all sites with [! = * I  and i ( l * a ) / N  is the number of 
signal and background sites respectively. Physically it means that the error-correcting 
abilities of the network depend on whether the initial condition {Sp) lies within the 
subspace spanned by the patterns or perpendicular to it (Amit et a/ 1987, Evans 1989). 

Let us consider the ensemble of initial conditions {Sp} giving rise to the initial 
overlaps m; and m i  defined by (4) for f = 0. The corresponding overlaps m'( f = I )  
and m-( f = 1) are determined by the distribution of the aligned fields 

( 5 )  
I I 

A,=.$!C-"21 JSo=C-1'2  'I I 

via 

E* sign A i .  
2 

( I * a ) N  
m*(t = 1) = 

The two parts of A i  defined by (5) are both Gaussian random variables by the central 
limit theorem and it is easy to determine their first two moments by splitting the 
stabilities (2) into the two parts 

A ~ = [ ~ C - ' f 2 E i  JG,$, (7)  

In this way we find 

2 
( i - m T 2 ) T + ( i - m i 2 ) -  I + a  

[Ai-m;AT-m,AJ2 
I + a  (l-m:2)-+(i-mi21- 

2 2 



Basin of attraction of the optimal perceptron with biased patterns 3703 

and from ( 6 )  

where erf(x) = 2/v%ji exp(-t2) dt denotes the standard error function. Assuming the 
overlaps to be self-averaging we can replace the site average by the ensemble average 
over the patterns and get 

where 

Here P+(A+,  A-)  refers to the signal sites ((1 = 1) and P-(A+, A-) to the background 
sites (6: = -1). €'*(A+, A-) can be determined using the projector operator formalism 
introduced by Elizabeth Gardner (Gardner 1988, Gardner 1989). The result becomes 
particularly simple near saturation ( q +  1) where it reads 

Here erfc(x) = 1 -erf(x) is the complementary error function. The parameter M gives 
the ferromagnetic bias in the couplings J,  and is defined by 

M = C - ' / ~ E J , , .  

K is the usuai stabiiity parameter. After iearning aii stabiiities A #  as defined by (ij are 
larger than or equal to K. Large values of K should give rise to large basins of attraction 
(Forrest 1988). M and K are related to the storage capacity (r by the equations (Gardner 
1988) 

Here the 6- ierage is to be performed with the distribution (1). 
Note that the difference (A'-A-) is a non-random quantity so that P*(A+,A-) 

depends on the totai stability A =  &'+A- oniy. Tine distribution for this totai stabiiity 
consists of a 8-peak at A = K and a Gaussian tail for A > K as in the case a = 0. 

Equations (10) and (12)  combine to give m ( t  = 1) in terms of m,. For the extremely 
diluted model this recursion relation is valid for all times due to the absence of 
correlation loops (Derrida et ai 1987, Gardner 1989). Therefore we get the following 
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l f $ q $ j q J  m . d / M  
f 

Figore 1. Flow diagram and stparatrices of the 
- 1  0 1 retrieval dynamics for a = -0.5 and U = 0.2, 0.5, 

0.8 for ( 0 ) .  ( b )  and (c)  respectively (see also text). 

d 
/ ! ' &  

-1 I 

m- 

" ,-,, 
explicit expression for the order parameter dynamics (ct (3)):  

The numerical analysis of this recursion relation yields the Row diagrams shown in 
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Figure 2. Fixpoints of  the recursion relation far uniform noise in the initial condition 
( m : =  m i )  as a function of  a for a = 0 ,  -0.5, -0.7, -0.9 (lop from left to right). The 
corresponding values of 0 1 ~  are 2, 2.4, 3.1 and 6.1 respectively. 

figure 1. For K 30 there are always five fixpoints. Two are given by mt = m-= + 1  and 
correspond to full retrieval of the pattern or its negative. The third one is given by 
m + =  m-=O and means no retrieval. The remaining two fixpoints are m + =  - m - = + l  
and correspond to ferromagnetic states (black and white screen respectively). Their 
existence is a direct consequence of the ferromagnetic bias M in the synaptic couplings. 

For small a (large K )  the zero overlap fixpoint is unstable and the attraction basins 
of the patterns are large (figure l ( a ) ) .  Nevertheless not all initial conditions with 
m = f ( l + a ) m + + f ( l - a ) m - > O  are attracted by the retrieval fixpoint as in the case 
a=O (Gardner 1989). The dotted line in figure l ( a )  corresponds to m = O .  As can be 
clearly seen a large number of the points to the right of this line evolve towards the 
ferromagnetic attractors. If, however, the noise is the same for signal and background 
sites, i.e. m: = m i ,  the system will safely retrieve the pattern. It was proposed (Amit 
et a1 1987) to confine the dynamics to configurations within the subspace spanned by 
the patterns, i.e. to those with 11 N Xj Sj = a, in order to improve the retrieval quality. 
Such configurations are represented by the dashed-dotted line in figure ] ( a )  and give 
a basin of attraction significantly smaller than for m l =  m i .  This is probably due to a 
smaller number of spurious attractors in the extremely diluted model as compared 
with the fully connected case studied by Amit et al. 

For larger a (smaller K )  the zero overlap fixpoint becomes a saddle with the unstable 
directions pointing to the ferromagnetic attractors (figure l ( b ) ) .  Consequently these 
now attract very many configurations and the basins of attraction of the patterns 
become smaller. The latter are quantitatively given by the separatrices and show the 
expected anisotropy depending on the relation between m: and m;. 
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For even larger values of n ( K + 0) the zero overlap fixpoint becomes stable (figure 
I (  c ) )  as in the case a = 0 and the basins of attraction of the patterns shrink to zero. 

In figure 2 we have plotted the fixpoint structure m ( a )  along the diagonal m + =  m-  
of figure 1 giving the optimal attraction basin. For comparison we have included the 
a = 0 result of Gardner (1989). With increasing la1 the region where all initial conditions 
with m > 0 are attracted by the pattern become smaller. Of course, for larger values 
of n the unstable fixpoint can be smaller than in the case a = 0 allowing for 2. 
Normalizing all curves to ac = 2 shows, however, that no relative improvement of the 
basins of attraction occurs. 

In conclusion we have shown that the attraction basins of the optimal perceptron 
storing patterns with low level of activity vary in a non-trivial manner with the mean 
activity a and the storage capacity a. Although for a + 1 large values of can be 
obtained not only does the amount of stored information decrease (Gardner 1988) but 
also the typical basins of attraction become extremely small. 

Let us finally note that patterns with ‘magnetization’ as discussed here are only the 
simplest kind of correlated patterns. An obvious generalization is pattern hierarchies 
as introduced by Parga and Virasoro (1986). The storage capacity of the optimal 
perceptron storing hierarchically correlated patterns has been determined recently 
(Engel 1990). We expect a similar behaviour of the attraction basins as found in the 
present paper with the roie of the Ferromagnetic attractors piayed by the ancestor 
patterns. 
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